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ABSTRACT 

Field programming in field-flow fractionation has the purpose of expanding the molecular weight or 
particle diameter range subject to a single analytical run. The two most widely used field programs are 
those in which the field strength decays with time according to an exponential function and a power 
function, respectively. The performances of these two programming functions are compared by obtaining 
limiting equations showing how retention time t,, standard deviation in retention u,, and fractionating 
power F,, vary with particle diameter d. It is shown that uniform fractionating power (Fd independent of d) 
can be obtained with power programming but that in exponential programming F,, is always non-uniform, 
varying as d-l/‘. In exponential programming a linear relationship arises between t, and log d. This 
particular relationship is impossible to realize in power programming but an alternative linear relationship 
can be obtained by plotting t, versus d’/3. These results are made more concrete by plotting and comparing 
field strength, relative field strength, Fd and t, for specific programming cases. 

INTRODUCTION 

Field-flow fractionation (FFF) is a family of techniques whose many system and 
operating variables make the methodology adaptable to virtually all classes of 
macromolecular and particulate materials. Given a system geometry, a carrier liquid, 
a flow-rate and field type, the field strength becomes the most important remaining 
variable influencing retention and resolution. The field strength can be varied widely 
and almost instantly to accommodate the requirements of samples of different 
molecular weights and particle sizes. Further, when the sample contains molecules or 
particles covering a very broad range of molecular weights or diameters, it becomes 
advantageous to change the field strength as the run proceeds so that eluting species at 
different times are subjected to different average field strengths that encourage their 
adequate resolution and timely elution. This approach is termed field-programmed 
FFF. 

Programming the field strength in FFF is analogous to, but simpler than, 
programming temperature or solvent strength in chromatography. All these pro- 
gramming methods are aimed at what Snyder [l] elegantly describes as the “general 
elution problem”, the problem of adequately resolving the early components while 
avoiding the excessive elution time of the late components of wide ranging mixtures. 

The programming of field strength as a tool for the optimized application of 
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FFF to widely dispersed samples was first described by Yang et al. [2] in 1974. It was 
shown that different retention time relationships (describing retention time versus 
particle size) emerged for different programs (i.e., different mathematical relationsips 
between field strength and time). Thus a variety of retention time relationships have 
been obtained for linear, parabolic,‘exponential, power and other programs based on 
the concepts and fundamental equations of the 1974 paper [3-lo]. Of particular note. 
exponential decay programs (and modilications thereof) produce nearly linear 
relationships when the logarithm of particle diameter is plotted against time [5,6,8]. 

Despite the early accessibility to quantitative retention time relationships, the 
effect of programming and variations in programming on FFF resolution was not 
delineated in the initial studies, thus making the search for optimized programming 
difficult if not impossible. This void was tilled in 1987 by a paper [8] defining 
fractionating power F (a kind of specific resolution applicable to continuous 
distributions of macromolecules and particles) and providing the general equations 
needed to compute F under different programming conditions. The equations were 
initially applied to exponential programming, showing that F decreases as particle 
diameter increases (i.e., resolution is non-uniform, less for large than small particles) 
[B]. Subsequently, a new form of programming was developed having the characteristic 
that a constant fractionating power could be obtained over a large range of particle 
diameters or molecular weights [9]. The new programs were called power programs 
and their use was described as power programming. 

The two most widely used classes of programs at present are exponential 
programs and power programs. Both program forms are used in commercial FFF 
instrumentation, with exponential programming utilized in the DuPont (Wilmington, 
DE, USA) sedimentation FFF system and power programming provided as part of 
both sedimentation FFF and thermal FFF instrumentation from FFF fractionation 
(Salt Lake City, UT, USA). These two programming approaches have different origins 
and specific objectives, although the broader objective in both cases is to realize the 
general advantages of programming first stated in the 1974 paper [2]. In particular, 
exponential programming was developed mainly to provide linear log (particle 
diameter) versus retention time plots and power programming has the specific purpose 
of yielding a uniform fractionating power for all particle sizes. In order to understand 
these two programming systems better, it is useful to ascertain if either programming 
form can assume the specific role of the other, or if these objectives are instead 
mutually exclusive. These and other comparative features of these two principal 
programming approaches will be examined in this paper. 

Although we focus below on the dependence of retention time and fractionating 
power on particle diameter, the same basic mathematics are involved in relating these 
parameters to molecular weight when polymer analysis is being considered. 

THEORETICAL RELATIONSHIPS 

Exponential programming 
The exponential program is described by the function 

t- t1 
S = So exp - - 

( > r1 
(1) 
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where S is the field strength at time t (when t 2 ti), So is the initial field strength, tl is 
a period of constant initial field strength before the start of field decay and r’ is the field 
decay constant. 

The specific objective of this program, as noted, is to obtain a linear relationship 
between retention time and the logarithm of particle size (see refs. 5 and 6). One 
presumed advantage of this lies in the relatively simple data manipulation required to 
obtain particle size distributions. This advantage has become less compelling, 
however, with the development of computer programs for the transformation from 
time to particle size and the capability to acquire particle size distribution curves for 
arbitrary field decay programs. I 

For the exponential decay program it may be shown (e.g., refs. 8 and 11) that 
retention time, tr, is given by 

t, = z’ In 
[ 

& (1 - Pi’) + tl 

0 1 
where A0 is the value of the retention parameter A at the initial field strength and where 

B ~1_2’0 
32’ (3) 

Eqn. 2 is applicable for components significantly retained at the initial field 
strength (i.e., lo -=sc 1). The above expression for B is a best approximation when tl = 
z’, which corresponds to the special case of time delayed exponential (TDE) decay 
utilized by Yau and Kirkland [5]. For the TDE program, eqn.2 reduces to 

t, = r’ In & (1 - B1/‘) 
0 1 (4) 

where e = 2.718282 is the natural logarithmic base. For each subtechnique of FFF 
carried out in the normal mode of retention, 1 is given by (see, for example, ref. 8) 

A=” 
Swd” 

where w is the channel thickness, d is the particle diameter and n depends on the field 
type (e.g., n = 3 for sedimentation FFF and n = 1 for flow FFF). The constant A is 
given by 

*=y (6) 

where C#J is the field-particle interaction parameter, which for sedimentation FFF is 
given by 

C#I = ; d3Ap (7) 
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where Ap is the density difference between the particles and the carrier fluid. The 
parameter n is independent of particle diameter for all FFF subtechniques. 

It follows that for TDE programmed field decay, 

lnd=$Aln 
[ 

!$ (1 - &/2) 1 
Thus, as first recognized by Yau and Kirkland [5], the theory predicts log-linear 

retention for TDE programming. Eqn. 8 shows that this relationship will hold for all 
normal mode separations subject to eqn. 5 under TDE programmed operation. 

Assuming that B is given by eqn. 3 (which is a good approximation for 
significantly retained material), we can differentiate eqn. 8 with respect to d to obtain 

dt, _ nz’ 

dd - d 

It may be seen from eqn. 44 in ref. 8 that for significantly retained material (i.e., 
material for which lo < Iz, =SZ l), the standard deviation in retention time, uf, is given 

by 

where D is the particle diffusion coefficient, R, is the retention ratio at the time 1, of 
elution and 1, is the value of A also at time t,. Replacing R, with 612, (a good 
approximation for well retained material), we obtain 

Eqn. 47 in ref. 8 states that 

A., = ; (1 - P) =;[1 -(l -$Yi2] 

(11) 

(12) 

where the second form substitutes for B using eqn. 3. If z’ x=- to, eqn. 12 reduces to 

(13) 

Thus, for eqn. 11 we obtain 

wt” 
I& z 

6(2’0)“2 
(14) 
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The diameter-based fractionating power, Fd, is defined by [8] 

(15) 

Therefore, for significantly retained material eluted under a TDE field decay 
program, we obtain (by the substitution of eqns. 9 and 14 into eqn. 15) the expression 

F,, z 
d, 6(r’O)“2 . E 

4wt0 d 
(16) 

or equivalently 

I 312 

Fd w g (tOD)“2 f 

0 
(17) 

Of the parameters in eqn. 17, only the particle diffusion coefficient D varies with 
particle diameter d. Specifically, the Stokes-Einstein equation shows that 

D=i$i (18) 

where k is the Boltzman constant, T is the system absolute temperature and q is the 
carrier fluid viscosity. As D is inversely proportional to d, it follows that 

Fd a d-II2 (19) 

Eqn. 19 provides a very general relationship for the dependence of Fd on d for 
well retained spherical or near-spherical particles subject to TDE programming, or 
more generally for any programming governed by eqn. 1. This relationship shows that 
Fd inevitably varies with d in exponential programming. Hence there is no possible 
combination of parameters that will provide a constant fractionating power over 
a significant range of d with the use of the TDE tield decay or related exponential 
programs. (For non-spherical particles, a constant Fd, defined relative to the effective 
spherical diameter by eqn. 15, is possible only if particles of all sizes have the same D, 
which requires the unlikely situation that particles of different effective spherical 
diameters must have the same Stokes diameter as found in eqn. 18.) 

Power programming 
The power program is described by the function [9] 

s=so s ( > 
P 

a 
(20) 

where S, So, tl and t are identically defined as for, the exponential decay program, t, is 
a program parameter with units of time and p is the program power. For a 
programmed decay it is necessary that t, < tl and p > 0. 
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The objective of this program is to obtain constant fractionating power over 
a wide range of particle diameters for material eluted in the normal mode of FFF 191. 

such 
It was shown by Williams and Giddings [9] that retention time for elution under 

a field decay program is given by 

t, = 

(21) 

It was also shown that the approximation holds over a greater range of A0 when 
-ptl. It follows from eqns. 21 and 5 that 

Differentiating eqn. 21 with respect to 1 gives 

(22) 

so that 

dt, 
dd K ddiG’) 

(23) 

(24) 

From eqn. 32 in ref. 9, it may be shown that for significantly retained material 
(i.e., material for which A0 -C II, -=c 1) 

12w t, - ta 

“0’/2R, 4p+l ( > 

l/2 
bt - A,’ 

Substituting 61, for R, (good for well retained material), we have 

@t 
2w t, - t, 

=g1/2 4p+l 
( > 

lIZA 
r 

and then replacing (tr - t.)& by (p + l)t0/6 using eqn. 36 in ref. 9, we obtain 

and finally, by using eqn. 43 in ref. 9 for A,, we are led to 

From the above equation together with eqns. 5 and 18 it follows that 

Q, cc d&&) 

(25) 

(26) 

(27) 

(28) 

(29) 
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Substituting eqns. 23 and 28 into the expression defining fractionating power, 
given by eqn. 15, and then rearranging gives 

From eqn. 30 in combination with eqns. 5 and 18, it is seen that 

(30) 

(31) 

We observe from the above equations that for power programmed field decay 
there is always a power dependence predicted for t, - t,, dt,/dd, tst and Fd on d for well 
retained components. Further, ifp is set equal to 3n - 1, that is, to 8 for sedimentation 
FFF and to 2 for flow FFF, then eqns. 22, 24, 29 and 31 reduce to 

t, - t, a d1j3 (32) 

dtr a d-213 - 

dd 
(33) 

CT, a d1’3 (34) 

Fd a do (35) 

The final expression, eqn. 35, shows that F,, is predicted to be independent of d. 
All of the power dependences are also observed to be independent of n. These 
dependences will therefore hold for all subtechniques of normal mode FFF (subject to 
eqn. 5) when field strength is power programmed using power p equal to 3n - 1. 

COMPARISON OF TYPICAL FIELD DECAY PROGRAMS 

Consider Fig. 1 in ref. 9, in which a power program (withp = 8 and t, = - 8t,) is 
plotted together with an exponential program for which r’ = (5/4) tl (note that it was 
incorrectly stated in ref. 9 that r’ = t,/4 for this figure). We take this figure (with an 
appearance much like that of Fig. 1 shown here) as a starting point for our more 
extended comparison of the program types. 

We shall consider the case of sedimentation FFF and assume typical experi- 
mental parameters, specifically So = 100 gravities, w = 0.025 cm, to = 100 s, Ap = 
1.5 g/ml, q = 0.01 P and T = 298 K. We have shown in the previous discussion and 
earlier (see ref. 9) that for a power programmed field decay a value of 8 forp is expected 
to give rise to constant fractionating power for a wide range of significantly retained 
particle sizes. The time parameters tl and t, (fixed at - 8t,) may be adjusted according 
to eqn. 57 in ref. 9 to give some desired level of constant fractionating power. For the 
experimental parameters stated above, we calculate that the values of 9.27 and 
-74.16 min are required for tl and t,, respectively, to obtain Fd = 5.0. For the 
exponential decay program we retain t1 = 9.27 min and set z’ = (5/4) tl = 11.59 min in 
order to match the power program as closely as possible. The resultant field decay 
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----- exponential program 
- power program 

Fig. 1. Comparison of field strength decay for power and exponential programsThe programming 
parameters (see text) have been adjusted to give similar overall decay profiles. 

programs are plotted together in Fig. 1 for elapsed times up to 100 min. The absolute 
difference between the curves is seen to be small over the full range of time shown. This 
comparison is deceptive, however. It is the relative difference in the programs that is of 
importance in comparing retention. The ratio of the field strengths (exponential/ 
power) is plotted in Fig. 2. The exponential program is seen to decay more slowly at 
first but at an elapsed time of 28.5 min the two decay programs are again equal. With 
the further passage of time the exponential program decays more rapidly than the 
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Fig. 2. Plot of the ratio of the field strength of the exponential decay program of Fig. 1 to the field strength of 
the power program shown in that figure. 
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Fig. 3. Fractionating power Fd (solid line) and retention time t, (dashed line) plotted as a function of particle 
diameter d for the power programming example described in the text. 

power program, so that at a time of 64.2 min the field strength falls to half the strength 
of the power program, and at 100 min to one seventh of that of the power program. 

Fig. 3 shows the variation of fractionating power (solid curve) and retention time 
(dashed curve) with particle diameter for the power program specified above and Fig. 4 
the corresponding curves for the exponential example. The range of constant F,, 
(following an initial rise from Fd = 0) is apparent in Fig. 3 whereas Fd for significantly 
retained material (following a similar initial rise) is seen to decrease with d-~ in 
Fig. 4, falling to a level of 3.7 for particles 1 pm in diameter. Note that retention times 
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Fig. 4. Plot of the fractionating power (solid line) and the retention time (dashed line) against particle 
diameter for the exponential programming example described in the text. 
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for the larger components are lower for the exponential program chosen. This reflects 
the lower field strengths predicted with the passage of time for the exponential decay 
program and shows that the faster elution occurs at the expense of fractionating 
power. 

It is clear from these examples that these two field decay programs, which 
superficially appear to be very similar, are actually different in relative terms and that 
the retention times and fractionating powers predicted for the two programs are 
consequently very different over a wide range of particle diameters. 

CONCLUSIONS 

The foregoing treatment shows that the fractionating power Fd of power 
programming can be made constant, independent of particle diameter d, by properly 
choosing the power p of the program, specifically p = 3n - 1, where n is defined by 
eqn. 5. The mathematics of programming, however, dictate that such a uniformity in 
fractionating power is not accessible through exponential (including time-delayed 
exponential) programming by any conceivable adjustment of parameters. Instead, F,, 
always decreases with increasing d through a dependence on d-lj2. Power pro- 
gramming, by contrast, is sufficiently flexible that Fd can be made to depend on d, if 
desired, by choosing values ofp # 3n - 1 in accordance with eqn. 3 1. Specifically, Fd 
can be made to increase or decrease with d (the choice depending on whether the 
highest resolution is needed for large or small particles) by setting p -K 3n - 1 or 
p > 3n - 1, respectively. However, Fd cannot be made to decrease with d with a 
dependence as strong as that of the exponential program, d- 112, as this case 
corresponds to an infinitely high value forp (we note generally that r;h values in excess 
of those actually required for analysis have the disadvantage that they require more 
time than necessary for completion of the run). 

Along with the constraints on Fd summarized above, there are similar constraints 
imposed by programming mathematics on the retention time (t&diameter (d) 
relationships. For power programming, tr - t, increases with some power of d (the 
power depending on the choice of p) in accordance with eqn. 22. This relationship 
cannot be converted into the log-linear relationship (see eqn. 8) characteristic of 
exponential programming. However, if a straight-line plot is desired for calibration 
purposes, a plot of I, - t, (or simply t,) ver.sus d”“+ ’ is simple to construct and utilize. 
Similarly, a plot of log (tr - t,) versus log d yields a straight line [a similar plot of log 
(tr - ta) versus log (molecular weight, M) for polymers yields a straight line]. 

Various log-log plots in FFF more commonly yield straight calibration lines 
than any other type of plot; these plots, once established, can be readily used to obtain 
particle sizes or particle size distributions from experimental fractograms. In addition 
to power programming, where as we note a plot of log (tr - t,) versus log d is linear 
(with slope l/3 when p = 3n - l), non-programmed FFF yields a straight line (again 
for well retained materials) of slope n when log t, [or, more exactly, log (tr - t0/3)] [ 121 

is plotted against log d. In both sedimentation/steric and flow/hyperlayer FFF, 
straight-line calibration plots are produced by plotting log t, versus log d. An 
advantage of such log-log plots is that the slope is equal to the selectivity &, the 
percentage change in t, for two particles differing in diameter by 1%. 

Programs other than power and exponential (e.g., linear and parabolic) have 
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their own unique Fd and t, relationships [IO]. Only the power program produces 
a uniform fractionating power across a wide range of d, but the other programs may 
prove useful in that they exhibit peak values of F,., that could be adjusted to focus on the 
most important constituents of a colloidal sample [lo]. The possibilities for the flexible 
use of various programs to customize FFF separations to satisfy specific particle 
characterization holds considerable promise for future work. 
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